Category: COMPUTATIONS
-
Ordinary Differential Equations
Modeling—developing a set of governing equations—of systems of interest to chemical engineers often starts with defining a differential element of the system. This differential element is a subset of the larger system, but with infinitesimally small dimensions. All the processes and phenomena occurring in the larger system are represented in the differential element. The modeling approach involves…
-
Transcendental Equations
Many of the equations in chemical engineering involve functions of variables more complex than simple powers. An equation containing exponential, logarithmic, trigonometric, and other similar functions is not amenable to solution by algebraic means—that is, by simple addition, multiplication, or root extraction operations. Such equations “transcend” algebra and are called transcendental equations [4]. Equation 4.7, the Nikuradse equation, often…
-
Algebraic Equations
Algebraic equations comprise the most common group of problems in chemical engineering. Linear algebraic equations are algebraic equations in which all the terms are either a constant or a first-order variable [1]. The straight line is represented by a linear algebraic equation. Linear algebraic equations are often encountered in phase equilibrium problems associated with separation processes. Figure 4.1 is…
-
Nature of Chemical Engineering Computational Problems
Chemical engineers deal with a multitude of equations ranging in complexity from simple linear equations to highly involved partial differential equations. The solution techniques accordingly range from simple calculations to very large computer programs. The classification of the problems based on the mathematical nature is presented in the following sections.