In Section 9-6, we considered the collision of two particle-like bodies but focused on only one of the bodies at a time. For the next several sections we switch our focus to the system itself, with the assumption that the system is closed and isolated. In Section 9-7, we discussed a rule about such a system: The total linear momentum of the system cannot change because there is no net external force to change it. This is a very powerful rule because it can allow us to determine the results of a collision without knowing the details of the collision (such as how much damage is done).
We shall also be interested in the total kinetic energy of a system of two colliding bodies. If that total happens to be unchanged by the collision, then the kinetic energy of the system is conserved (it is the same before and after the collision). Such a collision is called an elastic collision. In everyday collisions of common bodies, such as two cars or a ball and a bat, some energy is always transferred from kinetic energy to other forms of energy, such as thermal energy or energy of sound. Thus, the kinetic energy of the system is not conserved. Such a collision is called an inelastic collision.
However, in some situations, we can approximate a collision of common bodies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision between the ball and floor (or Earth) were elastic, the ball would lose no kinetic energy because of the collision and would rebound to its original height. However, the actual rebound height is somewhat short, showing that at least some kinetic energy is lost in the collision and thus that the collision is somewhat inelastic. Still, we might choose to neglect that small loss of kinetic energy to approximate the collision as elastic.
The inelastic collision of two bodies always involves a loss in the kinetic energy of the system. The greatest loss occurs if the bodies stick together, in which case the collision is called a completely inelastic collision. The collision of a baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat is completely inelastic because the putty sticks to the bat. That is one reason why baseball is not played with wet putty balls.
Leave a Reply