Cars during the past several decades have gotten much safer. Seat belts play a major role in automobile safety by preventing people from flying into the windshield in the event of a crash. Other safety features, such as airbags, are less visible or obvious, but are also effective at making auto crashes less deadly (see Figure 8.2). Many of these safety features make use of the concept of impulse from physics. Recall that impulse is the net force multiplied by the duration of time of the impact. This was expressed mathematically as Δ𝐩=𝐅netΔ𝑡Δp=FnetΔ� .
Figure 8.2 Vehicles have safety features like airbags and seat belts installed.
Airbags allow the net force on the occupants in the car to act over a much longer time when there is a sudden stop. The momentum change is the same for an occupant whether an airbag is deployed or not. But the force that brings the occupant to a stop will be much less if it acts over a larger time. By rearranging the equation for impulse to solve for force 𝐅net=𝛥𝐩𝛥𝑡,�net=����, you can see how increasing Δ𝑡Δ� while Δ𝐩Δ� stays the same will decrease Fnet. This is another example of an inverse relationship. Similarly, a padded dashboard increases the time over which the force of impact acts, thereby reducing the force of impact.
Cars today have many plastic components. One advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will crumple in a collision, especially in the event of a head-on collision. A longer collision time means the force on the occupants of the car will be less. Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that could crumple or collapse in the event of an accident.
Grasp Check
You may have heard the advice to bend your knees when jumping. In this example, a friend dares you to jump off of a park bench onto the ground without bending your knees. You, of course, refuse. Explain to your friend why this would be a foolish thing. Show it using the impulse-momentum theorem.
- Bending your knees increases the time of the impact, thus decreasing the force.
- Bending your knees decreases the time of the impact, thus decreasing the force.
- Bending your knees increases the time of the impact, thus increasing the force.
- Bending your knees decreases the time of the impact, thus increasing the force.
Leave a Reply