Extending Activity Calculations to High Concentrations

This chapter has served as an introduction to electrolyte models, and the extended Debye-Hückel leaves much to be desired in its limitations to concentrations lower than 0.1 m. However, the model has been used as an introduction, and those who work with electrolytes can find more models in the literature. In the older literature, the model was primarily improved by making modifications to the Debye-Hückel approximations. For example, Bromley and Davies add to the activity coefficient a term CI, where C is a parameter and I is ionic strength. Fig. 18.15 illustrates that the parameter C must be system-dependent to represent the data. One suggestion is that the ionic strength modifies the dielectric constant of the medium. Others propose that the ions begin to interact with each other in a way that the Debye-Hückel model cannot capture. Molecular simulations are relatively complicated in the presence of long-range electrostatic interactions, delaying the conclusive resolution of such arguments. Since the mid-1980s significant success has been achieved by combining various versions of the Debye-Hückel model with activity models such as NRTL or UNIQUAC.36 The Debye-Hückel model is considered to represent the “long range” electrostatic interactions, and the conventional activity models are considered to represent the “short range” physical interactions. Often, the short-range model parameters are lumped to minimize the number of parameters to be adjusted. Plotted in Fig. 18.15 are the activity coefficients calculated with ASPEN Plus using the unsymmetric electrolyte-NRTL (eNRTL) model. The ASPEN electrolyte wizard was used to set up the dissociations and pull parameters from the database. Owing to the importance of electrolytes in industrial processes and corrosion management, and the complexities of correct modeling, companies such as OLI Systems, Inc., specialize in electrolyte modeling.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *