To be fair to both of the central concepts of thermodynamics, we must mention entropy at this point, in parallel with the mention of energy. Unfortunately, there is no simple analogy that can be drawn for entropy like that for potential energy using the gravitational forces between the Earth and moon. The study of entropy is fairly specific to the study of thermodynamics.
What we can say at this point is that entropy has been conceived to account for losses in the prospect of performing useful work. The energy can take on many forms and be completely accounted for without contemplating how much energy has been “wasted” by converting work into something like warm water. To picture how much work this would take, imagine yourself stirring water in a bath tub until the temperature rises by 5°C. Entropy accounts for this kind of wastefulness. It turns out that the generation of such waste can be directly related to the degree of disorder involved in conducting our process. Thus, generation of disorder results in lost work. Furthermore, work that is lost by not maintaining order cannot be converted into useful work. To see the difference between energy and entropy, consider the following example. Oxygen and nitrogen are mixed as ideal gases at room temperature and pressure. How much energy is involved in the mixing process? How much (energy) work must be exerted to separate them again? To completely answer the first question we must understand the ideal gas mixture more completely (Chapter 4). We note that ideal gases are point masses with no potential energy to affect the mixing. Thus, the answer to the first question is that no energy is involved. For the answer to the second question regarding work to separate them, however, we must acknowledge that a considerable effort would be involved. The minimum amount required can be calculated as we will show in Chapter 4. To avoid introducing too many concepts at one time, we defer the quantitative development of the topic until Chapter 4.
Leave a Reply