Poisson, Cauchy, and George G. Stokes showed that the equations of the general theory of elasticity predicted the existence of two types of elastic deformation waves which could propagate through isotropic elastic solids. These are called body waves. In the faster type, called longitudinal, dilational, or irrotational waves, the particle motion is in the same direction as that of wave propagation; in the slower type, called transverse, shear, or rotational waves, it is perpendicular to the propagation direction. No analogue of the shear wave exists for propagation through a fluid medium, and that fact led seismologists in the early 1900s to understand that the Earth has a liquid core (at the centre of which there is a solid inner core).Britannica QuizPhysics and Natural Law

Lord Rayleigh showed in 1885 that there is a wave type that could propagate along surfaces, such that the motion associated with the wave decayed exponentially with distance into the material from the surface. This type of surface wave, now called a Rayleigh wave, propagates typically at slightly more than 90 percent of the shear wave speed and involves an elliptical path of particle motion that lies in planes parallel to that defined by the normal to the surface and the propagation direction. Another type of surface wave, with motion transverse to the propagation direction and parallel to the surface, was found by Love for solids in which a surface layer of material sits atop an elastically stiffer bulk solid; this defines the situation for the Earth’s crust. The shaking in an earthquake is communicated first to distant places by body waves, but these spread out in three dimensions and to conserve the energy propagated by the wave field must diminish in their displacement amplitudes as r−1, where r is the distance from the source. The surface waves spread out in only two dimensions and must, for the same reason, diminish only as fast as r−1/2. Thus, the shaking effect of the surface waves from a crustal earthquake is normally felt more strongly, and is potentially more damaging, at moderate to large distances. Indeed, well before the theory of waves in solids was in hand, Thomas Young had suggested in his 1807 lectures on natural philosophy that the shaking of an earthquake “is probably propagated through the earth in the same manner as noise is conveyed through air.” (It had been suggested by the American mathematician and astronomer John Winthrop, following his experience of the “Boston” earthquake of 1755, that the ground shaking was due to a disturbance propagated like sound through the air.)

With the development of ultrasonic transducers operated on piezoelectric principles, the measurement of the reflection and scattering of elastic waves has developed into an effective engineering technique for the nondestructive evaluation of materials for detection of such potentially dangerous defects as cracks. Also, very strong impacts, whether from meteorite collision, weaponry, or blasting and the like in technological endeavours, induce waves in which material response can be well outside the range of linear elasticity, involving any or all of finite elastic strain, plastic or viscoplastic response, and phase transformation. These are called shock waves; they can propagate much beyond the speed of linear elastic waves and are accompanied by significant heating.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *