The term “physical chemistry” was coined by Mikhail Lomonosov in 1752, when he presented a lecture course entitled “A Course in True Physical Chemistry” (Russian: Курс истинной физической химии) before the students of Petersburg University.[9] In the preamble to these lectures he gives the definition: “Physical chemistry is the science that must explain under provisions of physical experiments the reason for what is happening in complex bodies through chemical operations”.
Modern physical chemistry originated in the 1860s to 1880s with work on chemical thermodynamics, electrolytes in solutions, chemical kinetics and other subjects. One milestone was the publication in 1876 by Josiah Willard Gibbs of his paper, On the Equilibrium of Heterogeneous Substances. This paper introduced several of the cornerstones of physical chemistry, such as Gibbs energy, chemical potentials, and Gibbs’ phase rule.[10]
The first scientific journal specifically in the field of physical chemistry was the German journal, Zeitschrift für Physikalische Chemie, founded in 1887 by Wilhelm Ostwald and Jacobus Henricus van ‘t Hoff. Together with Svante August Arrhenius,[11] these were the leading figures in physical chemistry in the late 19th century and early 20th century. All three were awarded the Nobel Prize in Chemistry between 1901 and 1909.
Developments in the following decades include the application of statistical mechanics to chemical systems and work on colloids and surface chemistry, where Irving Langmuir made many contributions. Another important step was the development of quantum mechanics into quantum chemistry from the 1930s, where Linus Pauling was one of the leading names. Theoretical developments have gone hand in hand with developments in experimental methods, where the use of different forms of spectroscopy, such as infrared spectroscopy, microwave spectroscopy, electron paramagnetic resonance and nuclear magnetic resonance spectroscopy, is probably the most important 20th century development.
Further development in physical chemistry may be attributed to discoveries in nuclear chemistry, especially in isotope separation (before and during World War II), more recent discoveries in astrochemistry,[12] as well as the development of calculation algorithms in the field of “additive physicochemical properties” (practically all physicochemical properties, such as boiling point, critical point, surface tension, vapor pressure, etc.—more than 20 in all—can be precisely calculated from chemical structure alone, even if the chemical molecule remains unsynthesized),[citation needed] and herein lies the practical importance of contemporary physical chemistry.
Leave a Reply